Coronation's Chemicals
This is the first laser spectrum from the Chemistry and Camera (ChemCam) instrument on NASA's Curiosity rover, sent back from Mars on August 19, 2012. The plot shows emission lines from different elements present in the target, a rock near the rover's landing site dubbed "Coronation" (see inset).
ChemCam's detectors observe light in the ultraviolet (UV), violet, visible and near-infrared ranges using three spectrometers, covering wavelengths from 240 to 850 nanometers. The light is produced when ChemCam’s laser pulse strikes a target, generating ionized gases in the form of plasma, which is then analyzed by the spectrometers and their detectors for the presence of specific elements. The detectors can collect up to 16,000 counts produced by the light in any of its 6,144 channels for each laser shot.
The plot is a composite of spectra taken over 30 laser shots at a single 0.016-inch (0.4-millimeter) diameter spot on the target. An inset on the left shows detail for the minor elements titanium and manganese in the 398-to-404-nanometer range. An inset at the right shows the hydrogen and carbon peaks. The carbon peak was from the carbon dioxide in Mars' air. The hydrogen peak was only present on the first laser shot, indicating that the element was only on the very surface of the rock. Magnesium was also slightly enriched on the surface. The heights of the peaks do not directly indicate the relative abundances of the elements in the rock, as some emission lines are more easily excited than others.
A preliminarily analysis indicates the spectrum is consistent with basalt, a type of volcanic rock, which is known from previous missions to be abundant on Mars. Coronation is about three inches (7.6 centimeters) across, and located about 5 feet (1.5 meters) from the rover and about nine feet (2.7 meters) from ChemCam on the mast.
Image credit: NASA/JPL-Caltech/LANL/CNES/IRAP
-
Zapping Rocks Exposed by the Sky Crane's Thrusters
This photo mosaic shows the scour mark, dubbed Goulburn, left by the thrusters on the sky crane that helped lower NASA's Curiosity rover to the Red Planet. It is located 16 to 20 feet (5 to 6 meters) to the left of the rover's landing position. The sky crane appears to have uncovered an outcrop of loosely consolidated rocks during the rover's landing.
The mosaic consists of six images from the remote micro-imager (RMI) on the Chemistry and Camera (ChemCam) instrument, shown around an image from the Mast Camera for context. Each RMI image has a field of view of 4 to 5 inches (10 to 12 centimeters) across and shows details as small as 0.02 to 0.03 inches (0.5 to 0.6 millimeters). ChemCam's laser was used to analyze material at the centers of panels 2, 3 and 4.
Image credit: NASA/JPL-Caltech/LANL/CNES/IRAP/MSSS
-
After the Laser Shots
Images taken before and after NASA's Curiosity rover shot its laser 50 times are shown here. The rover's Chemistry and Camera (ChemCam) instrument shot its laser at rocks exposed by thrusters on the rover's sky crane at the scour mark called "Goulburn."
The images were taken by the instrument's remote micro-imager (RMI). They show differences in brightness at the impact spot as well as a slight change in shadows. The inset shows an area about 1 square-inch (2.5 centimeters per side). The target is about 19 feet (5.8 meters) away from the rover.
-
Frams: NASA-Video
-
Laser Plasmas on Earth and Mars This image shows laser plasmas in a test lab at Los Alamos National Laboratory, N.M., under typical atmospheric pressures on Earth and Mars. A plasma is an ionized, glowing gas. The pressure on the Red Planet is only about one percent of that at sea level on Earth, allowing the plasma to expand more and become brighter. The laser beam, which is invisible, crosses the image from the left and strikes a metal target, creating the plasmas. Each image covers about 3 by 3 inches (75 by 75 millimeters).
Image Credit: LANL