Blogarchiv
Raumfahrt - ESA ExoMars Mission 2016 - Update-4

.

15.03.2016

Nächster Halt Roter Planet - ExoMars 2016 zur Spurensuche nach biologischem Leben gestartet

Am 14. März 2016 um 10.31 Uhr Mitteleuropäischer Zeit (MEZ) ist die ExoMars 2016-Mission der Europäischen Weltraumagentur ESA und der russischen Raumfahrtbehörde Roskosmos vom russischen Kosmodrom Baikonur zu unserem Nachbarplaneten aufgebrochen. An Bord der Proton-Rakete sind der Trace Gas Orbiter (TGO) und der Landedemonstrator Schiaparelli (Entry, descent and landing Demonstrator Module EDM) untergebracht, die sich knapp elf Stunden nach dem Start von der Rakete getrennt und Kurs in Richtung Mars eingeschlagen haben. Um 22.29 Uhr wurde das erste Signal des Duos im Kontrollzentrum in Darmstadt empfangen. "In enger Kooperation von Politik, Industrie und Wissenschaft ist eine Mission entstanden, die die Suche nach Spuren von Leben auf dem Mars ebenso fortführt, wie auch neue Technologien erprobt", betont Prof. Pascale Ehrenfreund, Vorstandsvorsitzende des Deutschen Zentrums für Luft- und Raumfahrt (DLR). Im Jahr 2018 soll dann die Folgemission einen Rover auf der Oberfläche des Roten Planeten absetzen. Das Raumfahrtmanagement im DLR unterstützt die ExoMars 2016 und 2018-Missionen durch die Koordination der deutschen Beiträge für die ESA. Zudem sind seitens des DLR das Institut für Aerodynamik und Strömungstechnik, das Institut für Planetenforschung sowie im Vorfeld das Institut für Luft- und Raumfahrtmedizin an der ExoMars-2016-Mission beteiligt.
Reise zum Roten Planeten
"Mit dem erfolgreichen Start der ExoMars-Mission öffnet sich für die europäische Planetenforschung unter Führung der ESA ein neues Kapitel. Nach Mars Express und erfolgreichen Beteiligungen an internationalen Planetenmissionen sehen auch deutsche Wissenschaftler und Ingenieure mit Spannung dem Flug der Sonde und der Ankunft am Roten Planeten entgegen", freut sich Prof. Ehrenfreund. Nach dem Start, dem Ausbreiten der Solarpanels und dem Ausklappen der Kommunikationsantenne fliegen TGO und Schiaparelli gemeinsam rund sieben Monate durch den interplanetaren Raum in Richtung Roter Planet. Drei Tage vor ihrem Eintreffen wird Schiaparelli von TGO abgetrennt, bevor dieser dann in einen Orbit 400 Kilometer über der Marsoberfläche einschwenken wird. "Schiaparelli wird zunächst im Tiefschlaf weiterfliegen, bis er einige Stunden vor seinem Eintritt in die Atmosphäre wieder aufgeweckt wird. Bei ihrem Eintritt wird die Landekapsel durch die Reibung von circa 21.000 auf rund 1.650 Stundenkilometer abgebremst. Ihr Hitzeschild schützt sie dabei vor dem Verglühen, denn beim Bremsvorgang entstehen dort extreme Temperaturen", erklärt Oliver Angerer, Gruppenleiter für Exploration beim DLR Raumfahrtmanagement. Ein Fallschirm verlangsamt die Sonde weiter, bis er in einer Höhe von etwas mehr als einem Kilometer abgestoßen wird. Für den letzten Geschwindigkeitsverlust sorgen Bremstriebwerke. Zwei Meter über der Oberfläche werden diese dann abgeschaltet und Schiaparelli wird die restliche Strecke fallen - ein Landetest für die Folgemission ExoMars 2018.
Schiaparelli - Landesonde mit DLR-Sensoren und Wetterstation
Denn auf dem Mars zu landen ist immer noch eine große Herausforderung. Schiaparelli wird verschiedene Technologien untersuchen, die dem Rover der ExoMars 2018-Mission zur sicheren Landung verhelfen sollen: Materialien für den Hitzeschutz, einen Fallschirm, einen Radar-Höhenmesser sowie ein Triebwerkssystem für die letzte Landephase. Während des Fluges durch die Atmosphäre messen die vier COMARS+-Sensoren (COMbined Aerothermal and Radiometer Sensor), die vom DLR-Institut für Aerodynamik und Strömungstechnik in Köln entwickelt wurden, kontinuierlich den Wärmefluss, die Gasstrahlung, den Druck und die Oberflächentemperatur am hinteren Hitzeschutzschild. "Diese wertvollen Flugdaten werden bei der Verbesserung zukünftiger Landekapseln und Rekonstruktion der Atmosphärenparameter entlang der Flugbahn eine entscheidende Rolle spielen", sagt Dr. Ali Gülhan, der zusammen mit seinen Kollegen die gesammelten Daten in Köln auswertet. Nach seiner Landung ist Schiaparelli nur wenige Tage auf der Oberfläche des Roten Planeten aktiv. In dieser Zeit werden hauptsächlich die während des Landeanflugs gesammelten Daten übermittelt. Da sich die Forscher allerdings auch für das Klima unseres Nachbarplaneten interessieren, ist auf Schiaparelli eine "Wetterstation" installiert. Das DREAMS-Paket (Dust Characterisation, Risk Assessment and Environment Analyser on the Martian Surface) misst zum Beispiel Windgeschwindigkeit, Feuchtigkeit und Druck auf der Oberfläche des Roten Planeten und liefert den Wissenschaftlern einen "Mars-Wetterbericht", der bei der Planung künftiger Missionen helfen kann.
.
Trace Gas Orbiter - Sonde auf der Suche nach Spurengasen
Während Schiaparelli auf der Marsoberfläche Daten sammelt, umkreist der Trace Gas Orbiter den Roten Planeten, um die Atmosphäre mit seinen vier Instrumenten in rund 400 Kilometern Höhe zu untersuchen. Dabei ist für die Forscher vor allem Methan interessant. Dieses Spurengas kann durch geologische oder aber durch biologische Prozesse entstehen und damit möglicherweise Hinweise auf Leben geben. Geringe Mengen wurden bereits von der europäischen Sonde Mars Express nachgewiesen. TGO soll nun die Quellen aufspüren. Dafür wird das Nadir and Occultation for Mars Discovery (NOMAD)-Instrument mit zwei Infrarot- und einem Ultraviolettspektrometer genau die Bestandteile der Marsatmosphäre messen. Die Atmospheric Chemistry Suite (ACS) vervollständigt mit drei weiteren Infrarotspektrometern das Messspektrum von NOMAD, während der Fine Resolution Epithermal Neutron Detector (FREND) die Wasserstoffvorkommen des Roten Planeten bis zu einem Meter Tiefe vermessen wird. Das Colour and Stereo Surface Imaging System (CaSSIS) wird hochauflösende Farb- und Stereoaufnahmen der Marsoberfläche liefern. Zudem wird CaSSIS einzelne 3D-Stereoaufnahmen von lokal interessanten Gebieten - zum Beispiel in potenziellen Quellregionen von Spurengasen - erstellen und somit NOMAD und ACS unterstützen. "Wenn NOMAD erhöhte Spurengas-Konzentrationen findet, werden wir mit CaSSIS die entsprechenden Oberflächen genau untersuchen, ob wir dort Hinweise auf geologische Aktivität sehen. Wenn dort beispielsweise Anzeichen für Vulkanismus zu erkennen sind, weist das auf eine geologische Bildung von Methan hin", erklärt Ernst Hauber vom DLR-Institut für Planetenforschung. Er ist Mitglied im internationalen Wissenschaftsteam und wird mit Berliner Kollegen die CaSSIS-Daten und somit auch die geologischen Informationen auswerten.
ExoMars 2018 - ein kurzer Ausblick
2018 soll die zweite ExoMars-Mission dann zum roten Planeten aufbrechen. Diese wird einen Rover auf dem Mars absetzen und auch auf der Landeplattform ein Instrumentenpaket mit sich tragen. Ein Teil der wissenschaftlichen Nutzlast auf dem Rover ist die Panoramic Camera (PanCam). Ein Teil dieses Systems ist eine hochauflösende Stereokamera, die vom DLR-Institut für Planetenforschung entwickelt wurde. Außerdem wird der Rover erstmals mit einem Bohrer Proben aus bis zu zwei Meter Tiefe nehmen. Da die Marsoberfläche heute sehr lebensfeindlich ist, könnten Tiefenproben eher Spuren von Leben enthalten.
Quelle: DLR
-
EXOMARS ON ITS WAY TO SOLVE THE RED PLANET´S MYSTERIES
The first of two joint ESA-Roscosmos missions to Mars has begun a seven-month journey to the Red Planet, where it will address unsolved mysteries of the planet’s atmosphere that could indicate present-day geological – or even biological – activity.
The Trace Gas Orbiter and the Schiaparelli entry, descent and landing demonstrator lifted off on a Proton-M rocket operated by Russia’s Roscosmos at 09:31 GMT (10:31 CET) this morning from Baikonur, Kazakhstan.
Following separation of Proton’s first and second stages, the payload fairing was released. The third stage separated nearly 10 minutes after liftoff.
The Breeze-M upper stage, with ExoMars attached, then completed a series of four burns before the spacecraft was released at 20:13 GMT (21:13 CET).
Signals from the spacecraft, received at ESA’s control centre in Darmstadt, Germany via the Malindi ground tracking station in Africa at 21:29 GMT (22:29 CET), confirmed that the launch was fully successful and the spacecraft is in good health.
The orbiter’s solar wings have also now unfolded and the craft is on its way to Mars.
“It’s been a long journey getting the first ExoMars mission to the launch pad, but thanks to the hard work and dedication of our international teams, a new era of Mars exploration is now within our reach,” says Johann-Dietrich Woerner, ESA’s Director General.
“I am grateful to our Russian partner, who have given this mission the best possible start today. Now we will explore Mars together.”
Igor Komarov, General Director of the Roscosmos State Space Corporation,  adds, “Only the process of collaboration produces the best technical solutions for great research results. Roscosmos and ESA are confident of the mission’s success.” 
“We’re not only looking forward to the world-class science data that this mission will return, but it is also significant in paving the way for the second ExoMars mission, which will move our expertise from in-orbit observations to surface and subsurface exploration of Mars,” says Alvaro Giménez, ESA’s Director of Science.
The Trace Gas Orbiter (TGO) and Schiaparelli will travel to Mars together before separating on 16 October at distance of 900 000 km from the planet.
Then, on 19 October, Schiaparelli will enter the martian atmosphere, descending to the surface in just under six minutes.
Schiaparelli will demonstrate key entry, descent, and landing technologies for future missions, and will conduct a number of environmental studies during its short mission on the surface.
For example, it will obtain the first measurements of electric fields on the surface of Mars that, combined with measurements of the concentration of atmospheric dust, will provide new insights into the role of electric forces on dust lifting – the trigger for dust storms.
Meanwhile, on the same day, TGO will enter an elliptical four-day orbit around Mars, taking it from about 300 km at its nearest to around 96 000 km at its furthest point.
After a year of complex ‘aerobraking’, manoeuvres during which the spacecraft will use the planet’s atmosphere to lower its orbit slowly to a circular 400 km, its scientific mission to analyse rare gases in the atmosphere will begin.
Of particular interest is methane, which on Earth, points to active geological or biological processes.
One of the mission’s key goals is to follow up on the methane detection made by ESA’s Mars Express in 2004 to understand the processes at play in its generation and destruction, with an improved accuracy of three orders of magnitude over previous measurements.
TGO will also image features on the martian surface that may be related to trace-gas sources such as volcanoes. In addition, it will be able to detect buried water-ice deposits, which, along with locations identified as sources of the trace gases, could influence the choice of landing sites of future missions.
The orbiter will also act as a data relay for the second ExoMars mission, comprising a rover and stationary surface science platform, which is scheduled for launch in May 2018, arriving in early 2019.
Quelle: ESA
-
Erstes Signal empfangen
ExoMars-Sonde meldet sich in Darmstadt
Das europäisch-russische Weltraumprojekt zur Mars-Erkundung ist auf dem besten Weg: Am Montagabend meldete sich die ExoMars-Sonde erstmals beim Kontrollzentrum in Darmstadt.
"Dieses Warten muss ein Ende haben“, sagte ein sichtlich angespannter Paolo Ferri um 22.20 Uhr am Montagabend im hr-Fernsehen. Neun Minuten später, exakt zum geplanten Zeitpunkt, konnte sich der Betriebschef der europäischen Raumfahrtorganisation ESA locker machen.
Da erhielten die Experten im Raumflugkontrollzentrum in Darmstadt das erhoffte Signal der ExoMars-Sonde, die zwölf Stunden zuvor mit Hilfe einer "Proton-T“-Trägerrakete vom kasachischen Raumfahrtbahnhof Baikonur ins Weltall geschossen worden war.
Damit ist nach dem Start ein zweiter entscheidender Schritt des ehrgeizigen Projekts der ESA und der russischen Raumfahrtagentur Roskosmos geschafft: Nun kann das Darmstädter Kontrollzentrum die Steuerung der Sonde übernehmen. Zuvor hatte die russische Rakete der ExoMars-Mission ihre vierte und letzte Antriebsstufe abgetrennt.
Die Sonde klappte ihre Solarmodule aus und ist nun auf dem vorgesehenen Kurs zum roten Nachbarplaneten. "Wir sind auf dem Weg zum Mars", sagte ESA-Chef Jan Wörner nach der erfolgreichen Kontaktaufnahme.
Ankunft Mitte Oktober
ExoMars besteht aus dem Landegerät "Schiaparelli" und einer Atmosphärensonde mit der Bezeichnung TGO (Trace Gas Orbiter). Beide sollen den Mars nach einer siebenmonatigen Reise über fast 496 Millionen Kilometer im Oktober erreichen und nach Spuren von Leben erkunden.
Am 16. Oktober soll sich das Testlandemodul von der Atmosphärensonde trennen und drei Tage später auf dem Mars aufsetzen. Auf dem Roten Planeten wird das 600 Kilogramm schwere "Schiaparelli"-Modul mehrere Tage lang Technologien für die spätere Landung eines Rovers und einer Plattform zur Erforschung der Planetenoberfläche testen.
Rover kommt nach
Diese Landung ist bei einer zweiten ExoMars-Mission geplant, die 2018 starten soll. Der Rover soll auf und unter der Mars-Oberfläche Hinweise auf gegenwärtiges oder früheres Leben finden - wenn es solche Spuren denn tatsächlich gibt.
Quelle: hessenschau
-
Update: 3.04.2016
.
ESA EURONEWS: EXOMARS - AUF DEM WEG ZUM ROTEN PLANETEN
 Die Sonde ExoMars ist auf dem Weg zum Roten Planeten, um dort nach Leben zu suchen. Es ist eine unglaubliche wissenschaftliche Herausforderung, und wir begleiten in diesem Jahr in der Sonderserie "Destination Mars" die Menschen, die seit Jahren an dieser Mission arbeiten.
Auf zum Mars!
Das ExoMars-Abenteuer beginnt in Baikonur, mitten in der kargen kasachischen Steppe. Von hier aus flog 1961 Juri Gagarin als erster Mensch ins All. Und noch immer wird in Baikonur Weltraumgeschichte geschrieben. Forscher und Ingenieure aus Europa und Russland sind angereist, um den Start der Rakete mitzuerleben. Wissenschaftliche Instrumente, an denen sie Jahre gearbeitet haben, werden zum Mars geschickt.
Nicolas Thomas, Leiter des Berner CaSSIS-Teams ist angespannt: "Seit 40 Minuten ungefähr fühle ich mich ganz kribbelig. Ich werde langsam nervös. Man denkt an all die Menschen, die so viel Arbeit investiert haben. Man sieht die Menschen, die hier sind, und man denkt an jene, die zu Hause geblieben sind. Sie alle haben sich unglaublich viel Mühe gegeben, um diese Sonde auf die Startrampe zu bringen. Wann ist der Start? In fünf Minuten? Ich werde jetzt schon etwas nervös." 
Alles ist gut gelaufen. Die Sonde ist problemlos gestartet, aber es gibt noch viel zu tun. Wenige Stunden später im Missionskontrollzentrum in Moskau ist die Nervosität wieder spürbar. ExoMars bereitet sich auf ein schwieriges Manöver im Weltraum vor. Die Raketen-Oberstufe muss mehrmals gezündet werden, damit sie sich von der Sonde trennt und sie Richtung Mars schickt. Die Abtrennung ist geglückt, und die Erleichterung ist groß.
Der deutsche Physiker Thomas Passvogel arbeitet für die ESA. Er erklärt, was jetzt auf die Sonde zukommt: "Wir führen alle Tests durch, um sicherzugehen, dass wir die Sonde wirklich unter Kontrolle haben. In den folgenden Wochen testen wir alle Instrumente, alle Funktionen der Sonde und die große Antenne für die Kommunikation mit der Erde. Alles muss getestet werden, und es muss in dieser Phase geschehen. Dann entfernt sich die Sonde immer mehr bis wir ein letztes Mal den Kurs überprüfen und sie in Richtung Mars schleudern." 
Die Rätsel des Roten Planeten
Die erste der zwei ExoMars-Missionen soll u.a. in der Atmosphäre des Roten Planeten nach Methan suchen. Mars-Experten in Europa und Russland erhoffen sich von ExoMars neue Erkenntnisse. Patrick Thollet von der Ecole Normale Superieure in Lyon in Frankreich will herausfinden, warum es auf dem Mars kleinen Mengen an Methan gibt. Ein bislang ungelöstes Rätsel. "Das Gas, das uns am meisten interessiert, ist das Methan. Denn das Methan in der Atmosphäre des Mars ist nicht stabil. Das Kohlenstoffdioxid in der Atmosphäre des Mars hingegen ist stabil. Wenn Methan hinzugefügt wird, dann wird es innerhalb von mehreren hundert Jahren zu Kohlenstoffdioxid werden. Wenn es also Methan gibt, dann wird es derzeit vom Planeten abgesondert," so Patrick Thollet.
Die Wissenschaftler werden verfolgen, von wo aus der Mars Methan absondert und ihre Erkenntnisse dann mit den neuen Bildern vergleichen, die ExoMars machen wird. Cathy Quantin-Nataf, Professorin an der Universität in Lyon, interessiert sich vor allem für die  Kamera CaSSIS: "Mit dieser Kamera werden wir vom Mars Bilder bekommen - in Farbe und in einer Auflösung, die wir bislang noch nicht hatten. Wir werden die Topographie und die Hügel in hoher Auflösung haben."  
Auch der Verdacht auf salziges Wasser auf dem Mars hat unter den Forschern viele Fragen aufgeworfen. Patrick Thollet betont: "Wir haben nicht wirklich flüssiges Wasser auf dem Mars entdeckt. Wir haben Spuren von Salz entdeckt, die vielleicht durch flüssiges Wasser hinterlassen wurden. Aber wir sprechen hier nicht von Kochsalz, sondern von Salz, das eher dem Salz ähnelt, das man in Wasser gibt, um Bleichmittel zu machen. Es ist also nicht unbedingt etwas, das Leben fördert." 
Leben auf dem Mars?
Wenn ExoMars den Roten Planeten im Oktober erreicht, wird sie sich trennen. Die Hauptsonde wird in der Umlaufbahn des Planeten bleiben und der kleine Lander Schiaparelli wird auf die Oberfläche des Mars zusteuern. Die Oberfläche wird vielleicht ein wenig an die Steppen von Baikonur erinnern, aber mit einem großen Unterschied: Der Mars ist sehr viel kälter und trockener.  
Francesca Ferri, die Leiterin des Projekts AMELIA, erklärt: "Der Lander Schiaparelli wird die Atmosphäre durchqueren. Wir können so die Verhältnisse in der Atmosphäre messen und ein Profil erstellen. So werden wir in der Lage sein, das Klima auf dem Mars besser zu verstehen." Währenddessen werden die Spektrometer an Bord der Hauptsonde von der Umlaufbahn aus die Atmosphäre des Mars untersuchen. 
All diese Messungen sollen dabei helfen, die wichtigste Frage überhaupt zu beantworten: Gibt es oder gab es jemals Leben auf dem Mars?  Cathy Quantin-Nataf schließt die Möglichkeit nicht aus: "Der Planet wirkt unbewohnbar, aber das heißt nicht, dass er nicht bewohnt wird."
Nicolas Thomas ist da sehr viel vorsichtiger: "Wenn es dort Methan in großen Mengen gibt und man es an gewissen Orten findet, bedeutet das nicht, dass es etwas Lebendiges gibt. Ich bin eher skeptisch was diese ganze Geschichte vom Leben auf Mars anbelangt. Ich versuche die anderen zu bremsen."
Quelle: ESA
-
Update: 15.04.2016
.
ExoMars spacecraft sends back first images en route to Red Planet
The view sent back to Earth shows that the camera and its pointing mechanism are working well
.
The image shows a randomly selected portion of the sky close to the southern celestial pole
.
The European Space Agency (ESA) released on Thursday the first images sent back to Earth by the ExoMars spacecraft en route to the Red Planet.
The images were made by the ExoMars’ high-resolution camera on April 7 to test the spacecraft’s technology, the ESA said.
"In the weeks following liftoff on 14 March, mission operators and scientists have been intensively checking the Trace Gas Orbiter (TGO) and the Schiaparelli entry, descent, and landing demonstrator to ensure they will be ready for Mars in October," the ESA said in a statement.
Once orbiting Mars, TGO will embark on a mission to measure the abundance and distribution of rare gases in the atmosphere with its sophisticated sensors.
The image sent back by the ExoMars spacecraft "shows a randomly selected portion of the sky close to the southern celestial pole. This image is composed of two frames taken in slightly different directions by using the camera’s rotation mechanism," the ESA statement said.
As of today, one month following launch, TGO and Schiaparelli have completed more than 83 million km of their 500 million km journey to Mars. The view sent back to Earth shows that the camera and its pointing mechanism are working well, the ESA said.
The Russian-European mission ExoMars 2016 was launched from the Baikonur space center with the help of a Proton-M carrier rocket on March 14.
Quelle: TASS
-
Update: 17.04.2016
.
The first image taken by the Trace Gas Orbiter of the ESA–Roscosmos ExoMars 2016 mission.
The image was taken by the Colour and Stereo Surface Imaging System, CaSSIS, and points to a randomly selected portion of the sky close to the southern celestial pole.
The picture shows the result of taking one CaSSIS frame, turning the camera’s rotation mechanism, and then taking another. By subtracting the two frames, a series of bright and dark spots are seen, all equally offset from each other, demonstrating that these are positive and negative images of the same stars.
The field-of-view is 0.2º in the horizontal direction, and is a subset of a larger image, extracted for this purpose to show the stars at a reasonable size.
The arrows indicate the offset star positions.
In operation at Mars, about 400 km above the planet, CaSSIS will sweep out a swath as TGO approaches it, then turn the rotation mechanism by 180º and image the same swath as it recedes. By doing so, CaSSIS will make stereo images of the surface.
-
Die Raumfahrzeuge der ESA-Roskosmos-Mission ExoMars befinden sich nach ihrem Start vergangenen Monat in bestem Zustand. Außerdem hat der Orbiter ein erstes Testbild zur Erde geschickt, das den Sternenhimmel auf dem Weg zum Roten Planeten zeigt.
In den Wochen seit dem Start am 14. März haben die Missionsbetreiber sowie Wissenschaftler den Spurengas-Orbiter (Trace Gas Orbiter, TGO) und den Landedemonstrator Schiaparelli (Entry, Descent and Landing Demonstrator Module, EDM) immer wieder intensiv überprüft. So soll sichergestellt werden, dass die Raumfahrzeuge bereit sind für ihre Ankunft am Mars im Oktober.
Die Kontroll-, Navigations- und Kommunikationssysteme des TGO wurden in Betrieb genommen, die Schüssel der Hochgewinnantenne mit ihrem Durchmesser von 2,2 Metern hat bereits eine 2 Mbit/s schnelle Verbindung mit der Erde aufgebaut und die wissenschaftlichen Instrumente wurden ersten Tests unterzogen.
Sobald sich der TGO in einem Mars-Orbit befindet, wird er auf eine Mission geschickt, auf der er mit seinen ausgeklügelten Sensoren die Menge sowie die Verbreitung von seltenen Gasen in der Atmosphäre messen wird. Methan ist dabei von besonderem Interesse, denn es könnte ein Hinweis für aktive geologische oder biologische Prozesse auf dem Planeten sein.
Zur selben Zeit wird Schiaparelli die Technologien demonstrieren, die er für eine kontrollierte Landung auf dem Roten Planeten braucht. Die Landung ist für den 19. Oktober angesetzt.
„Sämtliche Systeme wurden aktiviert und getestet, darunter die Stromversorgung, Kommunikation, Sternensensoren, Orientierung und Navigation, sämtliche Nutzlasten und Schiaparelli. Außerdem ist das Flugkontrollteam durch die gesammelten Erfahrungen der letzten Wochen mittlerweile sicherer beim Betreiben dieses neuen und hochmodernen Raumfahrzeuges“, sagt Peter Schmitz, Spacecraft Operations Manager bei der ESA.
Die hochauflösende Kamera des TGO war am 7. April zum ersten Mal eingeschaltet worden
Am 7. April war die hochauflösende Kamera des TGO zum ersten Mal eingeschaltet worden und lieferte prompt die ersten Bilder aus dem Weltall.
Sie zeigen einen stichprobenartig ausgewählten Teil des Himmels in der Nähe des südlichen Himmelspols. Dieses Bild besteht aus zwei Einzelbildern, die die Kamera in leicht unterschiedliche Richtungen ausgerichtet aufgenommen hat. Hierfür wurde der Rotationsmechanismus der Kamera genutzt. Gleicht man die Einzelbilder miteinander ab, werden versetzte positive und negative Sternenbilder sichtbar.
 ExoMars/TGO is operated by specialists at ESOC, ESA's European Space Operations Centre, while science operations are conducted from ESAC, ESA's European Space Astronomy Centre
Das zeigt, dass die Kamera und ihr Ausrichtungsmechanismus gut funktionieren.
„Das erste Einschalten lief recht problemlos ab und sie arbeitet bisher gut“, sagt Nicolas Thomas von der Universität Bern in der Schweiz, Projektleiter der Kamera. 
„Obwohl sie nicht dafür gebaut wurde, schwache Sterne aufzunehmen, sind diese ersten Bilder doch sehr vielversprechend. Alles deutet darauf hin, dass wir gute Daten vom Mars bekommen werden.“, ergänzt Thomas.
Am Mars angekommen, wird die Kamera die Beschaffenheit der Oberfläche untersuchen, zum Beispiel Besonderheiten wie Vulkane, die ein Hinweis für Gasquellen sein könnten.
Vergangene Woche wurden außerdem zum ersten Mal die Spurengas-Sensoren sowie der Detektor für atomare Partikel, der verborgene Wassereis-Vorkommen aufspüren kann, eingeschaltet und die wissenschaftlichen Teams haben erste Testdaten erhalten.
Techniker haben darüber hinaus mit einer umfangreichen Testreihe an Schiaparellis Flugsystemen und Instrumenten begonnen.
Der Lander Schiaparelli ist in erster Linie ein Technologie-Demonstrationsmodul, wird während seiner kurzen Mission auf der Marsoberfläche aber auch mehrere Umweltstudien durchführen. So wird Schiaparelli erstmals elektrische Felder vermessen. Dies wird, in Kombination mit Messungen der Konzentration atmosphärischen Staubs, neue Erkenntnisse liefern, welche Rolle elektrische Kräfte für das Aufwirbeln von Staub spielen, was wiederum ein möglicher Auslöser von Staubstürmen ist.
Auf dem sechsminütigen Sinkflug zur Marsoberfläche wird Schiaparelli außerdem eine Reihe von Bildern aufnehmen.
„Die TGO- und Schiaparelli-Instrumente funktionieren allesamt gut und die wissenschaftlichen Teams, die diese betreiben, werden weiterhin Kalibrierungs- und Konfigurationsprüfungen durchführen, während die Raumsonde unterwegs zum Mars ist. So stellen sie sicher, dass alles bereit ist für die vor uns liegende aufregende Mission “, sagt Håkan Svedhem, ESA-Projektwissenschaftler für ExoMars 2016.
Einer der nächsten Meilensteine ist eine größere Kurskorrektur im Juli, die die Raumsonde auf die richtige Flugbahn zum Mars schickt, den sie am 19. Oktober erreichen wird.
Einen Monat nach dem Start haben der TGO und Schiaparelli über 83 Millionen Kilometer ihrer insgesamt 500 Kilometer langen Reise zum Mars zurückgelegt. 
Quelle: ESA
-
Update: 16.06.2016
.
A LITTLE HELP FROM FRIENDS
Mars Express
-
ESA’s first Mars orbiter will provide an important helping hand when the second arrives at the Red Planet in October.
Following lift off in March, the ExoMars Trace Gas Orbiter (TGO) and the Schiaparelli lander are now enroute to Mars, with arrival set for 19 October.
Once orbiting Mars, TGO will begin analysing rare gases in the planet’s atmosphere, especially methane, which on Earth points to active geological or biological processes.
Meanwhile, Schiaparelli will demonstrate the technology needed to make a controlled landing.
But they have to arrive at the planet first, and that’s where the 13 year-old Mars Express will lend a crucial helping hand – or, rather, ear.
Separation, atmospheric entry, descent, landing
.
ExoMars 2016 Schiaparelli descent sequence
-
On 16 October, Schiaparelli will separate and, three days later, descend and land as TGO enters orbit.
On landing day, ESA’s Mars Express, which has been delivering spectacular science data since 2003, will record signals from Schiaparelli for mission control to confirm a safe arrival and later reconstruct its descent.
“This will use the Mars Express Melacom communication system, originally carried for communications with the Beagle 2 lander and NASA rovers,” says James Godfrey, Mars Express deputy spacecraft operations manager.
“This will enable Mars Express to detect and record critical Schiaparelli descent events, such as entry into the atmosphere, parachute deployment, heatshield release, touchdown and start of surface activities.”
The orbit of Mars Express was adjusted in February for it to be in the right part of the martian sky to hear the signals transmitted from the descending Schiaparelli.
On 19 October, about 80 minutes before landing, Schiaparelli will wake up and a few minutes later begin transmitting a beacon signal.
Mars Express will already have pointed Melacom’s small antenna to the spot above the planet where Schiaparelli will appear, and will begin recording the beacon, turning to follow the descent path.
“Recording will continue through touchdown and the first 15 minutes of surface operation, after which Schiaparelli will switch off and Mars Express will stop recording,” says Simon Wood, Mars Express spacecraft operations engineer.
This will enable Mars Express to detect and record critical Schiaparelli descent events, such as parachute deployment, touchdown and start of surface activities.
“Then, Mars Express will turn its main antenna towards Earth and begin downloading data that contain the first in-situ confirmation from Mars of Schiaparelli’s arrival and landing.”
Melacom’s software was recently updated to be compatible with Schiaparelli’s transmitter. On 15 June, it will be tested while flying over NASA’s Curiosity rover, which will transmit a signal similar to Schiaparelli’s.
Quelle: ESA
-
Update: 28.06.2016
.
Testing Schiaparelli’s parachute
This is a test version of the parachute that will slow the Schiaparelli entry, descent and landing module as they plummet through the martian atmosphere on 19 October.
When the module is about 11 km from the surface, descending at about 1700 km/h, the parachute will be deployed by a mortar. The parachute will slow the module to about 200 km/h by 1.2 km above the surface, at which stage it will be jettisoned.
The parachute is a ‘disc-gap-band’ type, as used for the ESA Huygens probe descent to Titan and for all NASA planetary entries so far.
The canopy, with a normal diameter of 12 m, is made from nylon fabric and the lines are made from Kevlar, a very strong synthetic material.
Tests of how the parachute will inflate at supersonic speeds were carried out with a smaller model in a supersonic wind tunnel in the NASA Glenn Research Center.
The full-scale qualification model, pictured here, was used to test the pyrotechnic mortar deployment and the strength of the parachute in the world’s largest wind tunnel, operated by the US Air Force at the National Full-Scale Aerodynamic Complex in the Ames Research Center, California.
The tower is needed to place the mortar – the horizontal tube at the top of the tower – at the centre of the wind tunnel for testing.
Schiaparelli was launched on 14 March with the Trace Gas Orbiter on a Proton rocket from the Baikonur Cosmodrome in Kazakstan.
Quelle: ESA
---
TGO’s first image of Mars
EXOMARS SETS SIGHTS ON THE RED PLANET

-
ExoMars captured its first images of Mars this week as part of its preparations for arriving at the Red Planet in October.
ExoMars, a joint mission with Roscosmos, was launched on 14 March and has already travelled just under half of its nearly 500 million km journey.
While the Trace Gas Orbiter’s ‘first-light’ image of stars was acquired within a month of launch, it has now set sights on its destination.
The orbiter and Mars were 41 million kilometres apart on 13 June when the new image was taken. Although it does not compare to the high-resolution scenes that will be returned once the spacecraft is finally at Mars, it is an important milestone for the camera team.
“The images have confirmed the sensitivity of the instrument and are sharp,” says Antoine Pommerol, co-investigator of the Colour and Stereo Surface Imaging System at the University of Bern. “It seems to be well-focused and the signal level seems to be close to prediction.”
As the spacecraft approaches Mars, the images will start to become ever more impressive.
“Telescopes on Earth and the Hubble Space Telescope in orbit around it can still do far better than us at present, but we are still a long way away from Mars,” says Nicolas Thomas, the camera’s principal investigator.
“If the instrument continues to perform well, indications are that we should begin to exceed what is achievable from Earth in the second week of October, and then further improvements in resolution will happen rapidly.”
With another four months of journey ahead, the team will continue to look at the data they are collecting en route.
“Everything we do now helps us to understand and calibrate the instrument,” adds Nick. “There’s a lot to prepare for.”
The orbiter is set to enter orbit around Mars on 19 October, on the same day that its Schiaparelli entry, descent and landing demonstrator – released from the orbiter three days earlier – will land on Mars.
While Schiaparelli’s primary goal is to demonstrate key technologies needed for landing, the orbiter and its suite of four instruments are tasked with sniffing out rare gases in the atmosphere. Of particular interest is methane, which could point to active geological or biological processes on the planet.
The camera will be used to study geological features, including those that might be related to gas sources, such as volcanoes.
The orbiter’s other scientific instruments have also been undergoing checks this week. Next month, on 28 July, the spacecraft will perform a major course correction, which will line it up for Mars.
Quelle: ESA
---
SCHIAPARELLI DELIVERS MID-TERM REPORT
With just over half of the journey to Mars completed, the Schiaparelli entry, descent and landing module has carried out its mid-cruise checkout. DREAMS and DECA have called home to report that they are in good health.
.
 
Interior of Schiaparelli with DREAMS sensors labelled. Credit: ESA/ATG medialab
-
The Schiaparelli module, launched with the ExoMars Trace Gas Orbiter on 14 March, is a demonstrator to test key technologies in preparation for ESA’s contributions to subsequent missions to Mars.
On 19 October, the module will enter the Martian atmosphere at an altitude of about 121 km and a speed of 21,000 km/s. Within six minutes it will have decelerated and landed – at a site on Meridiani Planum. 
Now, en route to the Red Planet, scientists are taking advantage of the cruise phase to check the status of the payload.
During the mid-cruise checkout of DREAMS that was run on 16 and 17 June, the sensors measured the environmental conditions inside the ExoMars entry descent and landing module, both in the warm compartment where the electronics are housed and in the central area of the module where the sensors are situated.
The measurements are all perfectly in line with what is expected, according to DREAMS Principal Investigator, Francesca Esposito, from INAF - Osservatorio Astronomico di Capodimonte, Naples, Italy. "During this check-out we have looked at how the DREAMS sensors are responding inside the module as well as making some science measurements," she explains. "These tests are used to monitor the health of the sensors and to compare their behaviour in space with that in the laboratory. We also use these tests to set the zero point for some of our sensors  – this is important for when we are operating on Mars because we need to be sure that our sensors are all well calibrated."
This recent checkout was the second since launch. On 8 and 9 April, the near-Earth commissioning tests were carried out. At that time, the scientists responsible for DREAMS were present at the European Space Operations Centre for the real-time commanding of the Schiaparelli payload.
.
This figure shows measurements taken on 16 June 2016 with the MarsTem sensor on DREAMS, during the mid-cruise checkout. 
-
In contrast, this latest checkout was run autonomously onboard the module, following a sequence of commands that had been uploaded during the week. "Once again, DREAMS has behaved beautifully and this bodes very well for operations on the surface," says Francesca. "We have some more checkouts planned during the next few weeks and months so that we can monitor the health of DREAMS and keep an eye on any drift in the sensors. These checks are essential as they will allow us to have confidence in the behaviour of our sensors before they start taking measurements on the surface of Mars."
DREAMS will operate on the Red Planet for a few days after landing, powered by its batteries. During this time it will monitor local weather conditions at the landing site on Meridiani Planum, gathering measurements of temperature, humidity, pressure, dust opacity, wind speed, and wind direction. The final timeline for the sequence of measurements to be made on the surface will be uploaded to DREAMS after the last checkout and before separation.
DREAMS will also make the first measurements of atmospheric electric fields at the planet’s surface that, combined with measurements of the retrieved dust opacity, will provide new insights into the role of electric forces on dust lifting – the trigger for dust storms.
.
This is a picture of DECA, the DEscent CAmera on Schiaparelli, the ExoMars 2016 entry, descent and landing demonstrator module.
DECA is the flight spare of the VMC (Visual Monitoring Camera), which flew on the Herschel spacecraft. It will be used to determine the transparency of the martian atmosphere, to perform high-resolution imaging of the Schiaparelli landing site, and to generate 3-D topography of the surface of the landing region.
This camera has a mass of 0.6 kg and dimensions of about 9 cm × 9 cm × 9 cm. The red plastic circle in the middle is the lens protector, which will be removed before flight.
DECA will start taking images after the front-shield of Schiaparelli has been jettisoned during the journey through the martian atmosphere to the planet's surface. It will take 15 images at 1.5 s intervals. These images will be stored in local memory. To avoid electrostatic discharges affecting the instrument, there will be a delay of several minutes after Schiaparelli has landed on the surface of Mars, before the data are read out by Schiaparelli's computer and subsequently downlinked to Earth.
DECA was designed and built by Optique et Instruments de Précision (OIP) in Belgium for ESA.
-
The small descent camera, DECA, was also tested during this mid-cruise checkout. DECA, which is the flight spare of the Herschel visual monitoring camera, will take 15 images at 1.5 s intervals shortly after the front shield of Schiaparelli has been jettisoned, from an altitude of a few kilometres.  
During these recent tests DECA cycled through its image acquisition sequence to obtain 15 pictures of the dark interior of the module. These are used to check the health of the camera and to calibrate it.
"DECA operates autonomously while taking the 15 images during descent," explains Detlef Koschny, Team Leader of DECA, from ESA's Scientific Support Office at the European Space Research and Technology Centre.  "These checkout tests are very important as they allow us to monitor the status of the camera during flight and to calibrate it so that we can make the most of the 15 images that we will get."
In addition to DREAMS and DECA, Schiaparelli carries the COMARS+ package to characterise the heat shield response during descent; supports an investigation into atmospheric studies with AMELIA, using engineering sensors; and carries a retroreflector, called INRRI.
Quelle: ESA
-
Update: 29.07.2016
.

ExoMars spacecraft adjusts flight trajectory en route to Red Planet

The aim of the maneuver is to ensure that a bunch of space vehicles reach the Martian orbit on the designated date of arrival
.
The Russian-European interplanetary station ExoMars fired its main engine on Thursday for a 50-minute Deep Space Maneuver to adjust the flight trajectory en route to the Red Planet, Russia’s Space Research Institute, the producer of equipment for the Martian mission, told TASS on Thursday.
"The aim of the maneuver is to ensure that a bunch of the TGO/Schiaparelli space vehicles reach the Martian highly elliptical orbit on the designated date of arrival," the Institute said.
A command from the ground station in Australia was given at 12:30 p.m. Moscow time (09:30 GMT) and the adjustment lasted 50 minutes. The engine was fired to give the space probe an impulse of 326m/s. The maneuver was carried out at a distance of 83 million km from the Earth while slightly over 23 million km still remain for the spacecraft to reach Mars. Another maneuver is scheduled for August 11.
"In simple words, this [maneuver] is an important part of the mission comparable with the launch of a spacecraft, an approach to Mars or the separation of a landing module. All these stages are interrelated: you can’t climb a ladder, missing steps," researcher from the Institute’s department for space dynamics and data mathematical processing Anton Ledkov told journalists.
As was reported earlier, once the Russian-European interplanetary station reaches the orbit of Mars, it will make a unique deep space maneuver for the first time in history, braking against the Martian atmosphere.
Owing to the small amount of fuel, the spacecraft will be reaching the required circular orbit around Mars during a year, numerously touching the Martian atmosphere and braking against it.
The Russian-European mission ExoMars-2016 was launched from the Baikonur space center in Kazakhstan by a Proton-M carrier rocket on March 14.
The mission comprises the Trace Gas Orbiter (TGO) and the Schiaparelli landing demonstrator module, which will reach Mars in October.
TGO will study, in particular, small gas mixtures of the atmosphere and water ice on Martian soil. Schiaparelli will practice maneuvers to enter the Martian atmosphere, descend and land on the Red Planet. It will operate for just several days on Mars until the energy capacity of its batteries is depleted. TGO is expected to reach the orbit of Mars on October 19 and on the same day Schiaparelli is set to land on the Red Planet.
The ExoMars 2nd stage envisages sending a Russian landing platform and a European rover to the Red Planet in 2020. The mission’s 2nd stage will focus on drilling and analyzing Martian soil: scientists believe that the traces of organic life could have been preserved at a depth of several meters.
Quelle: TASS
-
Update: 29.07.2016
.
Engine burn gives Mars mission a kick
Following a lengthy firing of its powerful engine this morning, ESA’s ExoMars Trace Gas Orbiter is on track to arrive at the Red Planet in October.
ExoMars made its first critical manoeuvre since its 14 March launch this morning, firing its engine for 52 minutes to help it intercept Mars on 19 October.
ExoMars, a joint mission with Russia’s Roscosmos, was launched on 14 March and has already travelled well over half way of its nearly 500 million km journey.
The ExoMars Trace Gas Orbiter, TGO, is carrying the Schiaparelli entry, descent and landing demonstrator. Upon arrival, Schiaparelli will test the technology needed for the 2020 rover to make a controlled landing, while its parent craft will brake into an elliptical orbit around Mars.
Over the following months, TGO will shave the outer reaches of the atmosphere to lower its orbit. Its final circular orbit at about 400 km altitude will allow it to begin its five-year scientific mission in December 2017.
TGO will analyse rare gases in the planet’s atmosphere, especially methane, which on Earth may indicate either active geological or biological processes.
Lining up to intercept Mars
Today’s deep-space firing began automatically at 09:30 GMT (11:30 CEST), after commands to orient itself and ignite the 424 N main engine were uploaded on Tuesday.
The manoeuvre was closely monitored by ESA’s mission control in Darmstadt, Germany, who followed the craft’s signals via the highly sensitive radio dish at New Norcia, Australia.
“The engine provides about the same force as that needed to lift a 45 kg weight in a fitness studio, and it ran for about 52 minutes, so that’s quite a significant push,” says Silvia Sangiorgi, deputy spacecraft operations manager.
The firing was planned well in advance, and its duration was carefully calculated to minimise fuel consumption for the overall set of cruise and Mars capture manoeuvres. These include a second burn on 11 August and smaller ‘trim’ manoeuvres on 19 September and 14 October.
A brief burn was made on 18 July to test the engine for the first time. The performance that day was not as expected because of a misconfiguration, so a repeat test was done on 21 July, which ran perfectly.
“Today’s burn was the biggest of the four planned that will enable ExoMars to intercept Mars and precisely deliver the Schiaparelli lander on 19 October onto Meridiani Planum, a large, flat region near the equator,” says flight operations director Michel Denis.
Calculating today’s burn was done with the assistance of an ultra-precise navigation technique that pinpoints the craft’s position to within 1000 m at a distance of 150 million km from Earth.
In addition to the firing slots available in September and October, which will provide final fine adjustments to the trajectory before the separation of Schiaparelli on 16 October, ExoMars must also raise its orbit on 17 October and manoeuvre into Mars orbit on 19 October.
Teams have been using the relatively quiet cruise phase to test spacecraft systems, including the Schiaparelli lander and the radio unit that will be used to relay data from rovers on Mars, and to check TGO’s four science instruments.
.
Following a lengthy firing of its powerful engine, ESA’s ExoMars Trace Gas Orbiter is on track to arrive at the Red Planet in October.
Today’s deep-space manoeuvre began automatically at 09:30 GMT (11:30 CEST), after commands to orient itself and ignite the 424 N main engine were uploaded on Tuesday.
The manoeuvre was closely monitored by ESA’s mission control in Darmstadt, Germany, who followed the craft’s signals via the highly sensitive radio dish at New Norcia, Australia.
“The engine provides about the same force as that needed to lift a 45 kg weight in a fitness studio, and it ran for about 52 minutes, so that’s quite a significant push,” says Silvia Sangiorgi, deputy spacecraft operations manager, seen at centre in the photo.
Today’s burn was extremely accurate, and resulted in an extremely slight under performance of 0.01%. The next firing is set for 11 August.
Quelle: ESA
-
Update: 12.08.2016
.

ExoMars spacecraft adjusts flight trajectory en route to Red Planet

.

MOSCOW, August 11. /TASS/. The Russian-European interplanetary station ExoMars fired its main engine for about 2.5 minutes to adjust the flight trajectory en route to the Red Planet, the European Space Agency (ESA) reported on Thursday.

"Burn complete," the ESA said in a statement posted on its Twitter page.

The engine of the ExoMars station staying at a distance of 19 million kilometers from the Red Planet worked for 155 seconds. The previous trajectory adjustment was carried out on July 28 and lasted about 50 minutes.

The Russian-European mission ExoMars-2016 was launched from the Baikonur space center in Kazakhstan by a Proton-M carrier rocket on March 14.

The mission comprises the Trace Gas Orbiter (TGO) and the Schiaparelli landing demonstrator module, which will reach Mars in October.

TGO will study, in particular, small gas mixtures of the atmosphere and water ice on Martian soil. Schiaparelli will practice maneuvers to enter the Martian atmosphere, descend and land on the Red Planet. It will operate for just several days on Mars until the energy capacity of its batteries is depleted. TGO is expected to reach the orbit of Mars on October 19 and on the same day Schiaparelli is set to land on the Red Planet.

The ExoMars 2nd stage envisages sending a Russian landing platform and a European rover to the Red Planet in 2020. The mission’s 2nd stage will focus on drilling and analyzing Martian soil: scientists believe that the traces of organic life could have been preserved at a depth of several meters.

Quelle: TASS

-

Mars Express image of Schiaparelli’s landing site – with ellipse
 

SPOTLIGHT ON SCHIAPARELLI’S LANDING SITE

-

Schiaparelli, the Entry, Descent and Landing Demonstrator Module of the joint ESA/Roscosmos ExoMars 2016 mission, will target the Meridiani Planum region for its October landing, as seen in this mosaic created from Mars Express images.

Meridiani Planum in context

The landing ellipse, measuring 100 x 15 km, is located close to the equator, in the southern highlands of Mars. The region was chosen based on its relatively flat and smooth characteristics, as indicated in the topography map, in order to satisfy landing safety requirements for Schiaparelli.

NASA’s Opportunity rover also landed within this ellipse near Endurance crater in Meridiani Planum, in 2004, and has been exploring the 22 km-wide Endeavour crater for the last five years. Endeavour lies just outside the south-eastern extent of Schiaparelli’s landing ellipse.

The region has also been well studied from orbit and is shown to host clay sediments and sulphates that were likely formed in the presence of water. Indeed, a number of water-carved channels are also clearly visible, in particular in the southern portion of the image.

Meridiani Planum topography with Schiaparelli landing ellipse

Dune fields are seen inside a number of the craters in the region, and along with the dark deposits surrounding them, are likely shaped by wind and dust storms.

Although Schiaparelli’s main task is to demonstrate technologies needed to safely land on Mars, its small suite of scientific instruments will also record the wind speed, humidity, pressure and temperature at its landing site.

It will also obtain the first measurements of electric fields on the surface of Mars that, combined with measurements of the concentration of atmospheric dust, will provide new insights into the role of electric forces in dust lifting, the trigger for dust storms.

Perspective view in Meridiani Planum – with Schiaparelli landing ellipse

Schiaparelli is riding to Mars on board the ExoMars Trace Gas Orbiter. The mission launched on a Proton rocket from Baikonur on 14 March, and is on course for a 19 October rendezvous with the Red Planet.

Schiaparelli will separate from its mothership on 16 October; three days later, it will use a combination of a heat shield, a parachute, a propulsion system and a crushable structure to slow down during its six-minute descent to the surface of Mars.

Perspective view in Meridiani Planum – with Schiaparelli landing ellipse

ESA’s Mars Express, which has been in orbit at the Red Planet since 2003, is among the fleet of orbiters that will act as a data relay during Schiaparelli’s short battery-powered mission on the surface.

Images acquired with the Mars Express High Resolution Stereo Camera on 23, 26 and 29 August 2005, and 1 August 2010, were used to compile the four-image colour mosaic featured in this release.

Quelle: ESA

-

Update: 17.08.2016

.

CNES - ExoMars 

-

is-bouclier-schiaparelli

is-exomars-2016-2020

exomars-cnes-a

exomars-cnes-aa

exomars-cnes-ab

Raumfahrt

6144 Views
Raumfahrt+Astronomie-Blog von CENAP 0