Blogarchiv
Astronomie - ALMA wird erstmals Zeuge der Bildung von Galaxien im frühen Universum

.

Diese Ansicht zeigt eine Kombination von Bildern von ALMA und vom Very Large Telescope. Das Zentralobjekt ist die weit entfernte Galaxie BDF 3299, die man in dem Zustand sieht, in dem sie sich befand, als das Universum weniger als 800 Millionen Jahre alt war. Die helle rötliche Wolke links unterhalb ist der ALMA-Nachweis einer ausgedehnten Materiewoke, die sich mit der noch sehr jungen Galaxie vereinigt.

.

Das Atacama Large Millimeter/submillimeter Array (ALMA) hat die entferntesten Gaswolken von Sternentstehungsregionen entdeckt, die je in Galaxien des frühen Universums gefunden wurden. Die neuen Beobachtungen erlauben den Astronomen erstmals zu sehen, wie die ersten Galaxien entstanden sind und wie sie den kosmischen Nebel in der Ära der Reionisation aufgelöst haben. Dies ist das erste Mal, dass von solchen Galaxien mehr als nur ein schwacher Lichtfleck sichtbar ist.
Als die ersten Galaxien anfingen, sich wenige hundert Millionen Jahre nach dem Urknall zu bilden, war das Universum erfüllt von einem Nebel aus Wasserstoffgas. Aber als mehr und mehr leuchtkräftige Quellen – sowohl Sterne als auch die von gewaltigen Schwarzen Löchern angetriebenen Quasare – anfingen zu leuchten, lösten sie den Nebel auf und machten das Universum transparent für ultraviolettes Licht [1]. Astronomen nennen dies die Epoche der Reionisation. Über diese ersten Galaxien ist alleridngs nur wenig bekannt und bis jetzt hat man sie wenn dann nur als sehr schwache Lichtflecke wahrgenommen. Nun jedoch beginnen neue Beobachtungen dank der Leistungsfähigkeit von ALMA dies zu ändern.
Ein Team von Astronomen, angeführt von Roberto Maiolino vom Cavendish Laboratory und vom Kavli Institute for Cosmology, University of Cambridge in Großbritannien haben ALMA auf Galaxien gerichtet, von denen man weiß, das man sie in Zustand nur 800 Millionen Jahre nach dem Urknall sieht [2]. Sie waren dabei nicht am Licht der Sterne interessiert, sondern an dem schwachen Leuchten ionisierten Kohlenstoffs [3], das von den Gaswolken ausgeht, aus denen sich Sterne bilden. Sie wollten die Wechselwirkung zwischen der jungen Generation von Sternen und den kalten Klumpen studieren, die sich gerade zu diesen frühen Galaxien verdichteten.
Sie schauten ebensowenig nach den extrem hellen und seltenen Objekten – wie Quasaren oder Galaxien mit sehr hoher Sternentstehungrate – die man bislang untersucht hatte. Stattdessen konzentrierten sie sich auf die weniger dramatischen, jedoch häufiger vorkommenden Galaxien, die das Universum reionisiert haben, und die sich dann zu der Mehrzahl von Galaxien weiterentwickelt haben, die uns heute umgeben.
Von einer der Galaxien – sie erhielt die Bezeichnung BDF2399 – konnte ALMA ein schwaches, aber deutliches Signal von leuchtendem Kohlenstoff empfangen. Dieses Leuchten kommt jedoch nicht vom Zentrum der Galaxie, sondern von einer Seite.
Koautor Andrea Ferrara von der Scuola Normale Superiore im italienischen Pisa erklärt die Bedeutung der neuen Ergebnisse: „Dies ist der Nachweis der am weitesten entfernten, jemals beobachteten Emission dieser Art von einer 'normalen' Galaxie, die wir in dem Stadium sehen, in dem sie sich weniger als eine Milliarde Jahre nach dem Urknall befand. Damit haben wir die Gelegenheit, die Entstehung der ersten Galaxien zu beobachten. Zum ersten Mal sehen wir frühe Galaxien nicht nur als winzigen Lichtfleck, sondern als Objekte mit einer inneren Struktur!”
Die Astronomen glauben, dass die exzentrische Position des Glimmens daher rührt, dass die zentrumsnahen Wolken in der rauhen Umgebung neu gebildeter Sterne zerstreut werden – sowohl durch deren intensive Strahlung, als auch durch die Folgen von Supernovaexplosionen. Das Kohlenstoffleuchten markiert hingegen das kühle, frische Gas, das aus dem intergalaktischen Medium aufgesammelt wird.
Über die Kombination der neuen ALMA-Beobachtungen mit Computersimulationen wurde es möglich, Schlüsselprozesse bei der Bildung der ersten Galaxien im Detail zu verstehen. Die Effekte der Strahlung von Sternen, das Überleben von Molekülwolken, das Entkommen von ionisierter Strahlung sowie die komplexe Struktur des interstellaren Mediums können jetzt berechnet und mit Beobachtungen verglichen werden. BDF2399 ist wahrscheinlich ein typisches Beispiel für die Galaxien, die für die Reionisation maßgeblich verantwortlich sind.
„Wir versuchen schon seit Jahren, das interstellare Medium und die Bildung der Verursacher der Reionisation zu verstehen. Dass wir nun endlich unsere Vorhersagen und Hypothesen mit realen Daten von ALMA vergleichen können, ist ein aufregender Moment und eröffnet eine neue Welle von Fragen. Derartige Beobachtungen werden viele der hartnäckigen Probleme zu lösen helfen, die wir mit der Bildung der ersten Sterne und Galaxien im Universum haben”, fügt Andrea Ferrara hinzu.
Roberto Maiolino resümiert: „Diese Studie wäre ohne ALMA einfach unmöglich gewesen, da kein anderes Instrument die erforderliche Empfindlichkeit und räumliche Auflösung hat. Obwohl dies eine der bislang umfangreichsten Beobachtungen mit ALMA ist, reizt sie doch bei weitem noch nicht seine Möglichkeiten aus. In Zukunft wird uns ALMA Bilder von der Feinstruktur primordialer Galaxien liefern und die Entstehung der ersten Galaxien im Detail aufzuklären helfen.”
Endnoten
[1] Neutraler Wasserstoff absorbiert sehr effizient alle hochenergetische Ultraviolett-Strahlung, die von jungen Sternen emittiert wird. Dementsprechend kann man diese Sterne äußerst schlecht im frühen Universum beobachten. Gleichzeitig ionisiert das absorbierte ultraviolette Licht den Wasserstoff, wodurch er völlig transparent wird. Die heißen Sterne fressen daher sozusagen ihre eigenen Blasen in das Gas. Und sobald sich alle diese Blasen vereinen und so den Raum ausfüllen, ist die Reionisation komplett und das Universum wird durchsichtig.
[2] Diese hatten Rotverschiebungen von 6,8 bis 7,1.
[3] Astronomen sind insbesondere deshalb an ionisiertem Kohlenstoff interessiert, weil diese spezielle Spektrallinie den Großteil der von Sternen eingebrachten Energie abtransportiert und sie den Astronomen so erlaubt, das kalte Gas aufzuspüren, aus dem sich Sterne bilden. Im Speziellen hat das Team nach Emissionen von einfach ionisiertem Kohlenstoff (bekannt als [C II]) gesucht. Diese Strahlung wird bei einer Wellenlänge von 158 Mikrometern emittiert, und nachdem diese dann durch die Expansion des Universums gedehnt wurde, kommt sie im ALMA mit just der richtigen Wellenlänge von 1,3 Millimetern an, um beobachtet werden zu können.
.
Diese Ansicht zeigt eine Kombination von Bildern von ALMA und vom Very Large Telescope. Das Zentralobjekt ist die weit entfernte Galaxie BDF 3299, die man in dem Zustand sieht, in dem sie sich befand, als das Universum weniger als 800 Millionen Jahre alt war. Die helle rötliche Wolke links unterhalb ist der ALMA-Nachweis einer ausgedehnten Materiewoke, die sich mit der noch sehr jungen Galaxie vereinigt.
Quelle: ESO
4131 Views
Raumfahrt+Astronomie-Blog von CENAP 0