For decades, the standard perception of Mars has been almost black-and-white in its simplicity—or rather red and blue: There is the barren, freeze-dried and rust-ruddy planet of today. And eons ago, there was a world warmer, wetter and more aquamarine with rivers, lakes, oceans and perhaps even life on its surface. In this red-and-blue view of Mars is much like a coin, with scientists questing to understand what caused the great planetary flip between its two opposing sides. Yet the closer they look, the clearer it is that this crude dichotomy cannot be entirely true: Mars, like Earth, is and always has been many worlds in one. The story of its habitability may be best understood not as a single, one-way global shift between red and blue but instead a series of hopscotch skips across a motley, regional patchwork of complex, changing conditions.

“It’s very easy to see Mars as one thing at one time,” says Matt Balme of the Open University, based in England. “But there were locations that were warm, wet, cold and dry, all at once.”

A research paper published today in the journal Science highlights this more nuanced view in exquisite detail. (Balme was not involved with the work.) It reports initial results from an in situ visual survey of the “Octavia E. Butler” landing site of NASA’s Perseverance rover, which touched down in Jezero Crater in February. Mission planners chose Jezero because orbital images suggested it harbors an ancient river delta and lake system sculpted by flowing water billions of years ago. Now analysis from Perseverance has not only confirmed this to be true but has also discovered short-lived episodes of sudden change that happened there.

Co-led by Nicolas Mangold of the University of Nantes in France, the study team used images taken by Perseverance to examine the size, orientation and distribution of rocks strewn around the rover and embedded in sedimentary layers on exposed cliff faces and outcrops up to several kilometers away. The results show that 3.7 billion years ago, a river did indeed flow into this region at speeds of several meters per second, feeding a lake that filled the 45-kilometer-wide crater to depths as great as 100 meters in places. But the team’s analysis also revealed unexpected fluctuations in the lake’s depth, which appeared to occasionally rise or fall by several meters, possibly the result of seasonal variations. “There was a lake,” Mangold says, “but the story is different than expected.”

The most surprising characters in the story of Jezero so far were spied jutting from the delta’s fine-grained sediments: boulders more than a meter across that were worn round and smooth by long tumbles through Jezero’s river yet paradoxically too immense for any mere river to move. “They should not be there,” Mangold says. The explanation might be that, at some point, this region experienced extreme flooding in which the boulders and other debris were washed across great distances by walls of water cascading along the riverbed before a final plunge into the ancient lake. What might have caused floods of such magnitude is not clear, but on Earth, large amounts of melting ice or heavy precipitation can be the culprit behind such phenomena.

These boulders and their surrounding sediments could represent a fantastic opportunity to study material that originated far beyond Jezero’s perimeter, says Kirsten Siebach of Rice University, who was not involved in the paper. “Perseverance might be able to sample rocks that were really far upstream,” she says, referring to the rover’s key objective of retrieving specimens for future return to Earth.

A more active and extreme Martian hydrology was also described in a recent paper published in Nature by geologist Timothy Goudge of the University of Texas at Austin and his colleagues. That work showed that perhaps a quarter of the valley networks seen on Mars today could have been carved out on extremely short timescales by vast torrents of waterrushing across the surface in episodes of catastrophic flooding. “Instead of carving the canyons over tens or hundreds of thousands of years, it would be on the order of weeks to months to maybe a few years,” Goudge says. “It’s sort of geologically instantaneous.”

Such violent, cataclysmic deluges may have been the bane of any organisms in their path, but they could be a boon for earthbound astrobiologists looking for their remains with a robotic rover. If anything ever did stir to life in the seemingly prime habitable conditions of Jezero’s river and lake, proof of its existence could have been preserved as the floodwaters rushed in, shielded from the ensuing eons of harsh surface conditions by a protective blanket of suddenly deposited sediments. “It means they’re shielded from radiation and not being weathered,” says Michael Meyer, lead scientist of NASA’s Mars Exploration Program at the agency’s headquarters in Washington, D.C. For Perseverance, these deposits inside the river delta could thus be one of the best locations to look for evidence of past life on Mars. “It’s a great target,” Meyers says.

What all this portends is nothing less than a new era in our otherworldly exploration. With each additional sign that Perseverance and other missions find of localized, transient events profoundly shaping parts of the Martian landscape, another colorful thread will be woven into the grand tapestry of the planet’s history. Whether in the welcoming blue of a clear crater lake or in the rushing red torrent of sediment-filled floods, our neighboring orb still has much to tell us. “We’re just starting to understand the complexities of Martian history,” Siebach says.

Quelle: SCIENTIFIC AMERICAN

----

Update: 11.10.2021

.

Rocks on Floor of Jezero Crater, Mars, Show Signs of Sustained Interactions with Water

2158-stackmorganmarsrover

Portland, Ore., USA: Since the Perseverance rover landed in Jezero crater on Mars in February, the rover and its team of scientists back on Earth have been hard at work exploring the floor of the crater that once held an ancient lake. Perseverance and the Mars 2020 mission are looking for signs of ancient life on Mars and preparing a returnable cache of samples for later analyses on Earth.

Katie Stack Morgan is the Mars 2020 Deputy Project Scientist and a research scientist at NASA’s Jet Propulsion Laboratory (JPL), and will be providing an update on early results on the Mars 2020 rover mission on Sunday, 10 Oct., at the Geological Society of America’s Connects 2021 annual meeting in Portland, Oregon.

With Perseverance’s high-tech suite of on-board instruments, the scientific team has been analyzing the rocks of the crater floor, interpreted for now as igneous rocks, presumably a volcanic lava flow.

“The idea that this could be a volcanic rock was really appealing to us from a sample return perspective because igneous rocks are great for getting accurate age dates. Jezero was one of the few ancient crater lake sites on Mars that seemed to have both incredible sedimentary deposits as well as volcanic deposits that could help us construct the geologic time scale of Mars,” said Stack Morgan.

The lake system and rivers that drained into Jezero crater were likely active around 3.8–3.6 billion years ago, but the ability to directly date the age of the rocks in laboratories on Earth will provide the first definitive insight into the window of time that Mars may have been a habitable planet.

Using Perseverance’s abrasion tool—which scratches the top surface of the rock to reveal the rock and its textures—the team discovered that the crater floor seems to be composed of coarser-grained igneous minerals, and there are also a variety of salts in the rocks. Observations suggest that water caused extensive weathering and alteration of the crater floor, meaning that the rocks were subjected to water for a significant duration of time.

After using its on-board tools to analyze characteristics of the crater floor, the next phase was for Perseverance to collect a rock sample using its drill feature. However, after Perseverance completed its first attempt at drilling, the core sample tube came up empty.

“We spent a couple of days looking around the rover thinking that the core might have fallen out of the bit. Then we looked back down the drill hole thinking it might never have made it out of the hole. All these searches turned up empty. In the end we concluded that the core was pulverized during drilling,” said Stack Morgan.

The rock likely became so altered and weakened from interactions with water that the vibrations and strength from the Perseverance drill pulverized the sample.

Scientists then targeted another rock that appeared more resistant to weathering, and Perseverance was able to successfully collect two core samples—the first in its sample collection. Perseverance’s cache of samples will be part of a multi-spacecraft handoff, still in development, that will hopefully be returned to Earth in the early 2030s. From there, scientists in laboratories on Earth will date and analyze the rocks to see if there might be any signs of ancient Martian life.

“The rocks of the crater floor were not originally envisioned as the prime astrobiology target of the mission, but Mars always surprises us when we look up close. We are excited to find that even these rocks have experienced sustained interaction with water and could have been habitable for ancient martian microbes,” said Stack Morgan.

Session 14: T117. Perseverance at Jezero Crater—Characterizing an Ancient Crater Lake Basin on Mars
Paper 14-1: Early results from the Mars 2020 Perseverance rover in Jezero Crater, Mars
https://gsa.confex.com/gsa/2021AM/meetingapp.cgi/Paper/367543

Quelle: The Geological Society of America

----

Update: 24.10.2021

.

The Mars helicopter Ingenuity is ready to fly again after interplanetary radio blackout

Quelle: SD