Blogarchiv
Astronomie - A Universe Aglow MUSE spectrograph reveals that nearly the entire sky in the early Universe is glowing with Lyman-alpha emission

2.10.2018

eso1832a-1

Deep observations made with the MUSE spectrograph on ESO’s Very Large Telescope have uncovered vast cosmic reservoirs of atomic hydrogen surrounding distant galaxies. The exquisite sensitivity of MUSE allowed for direct observations of dim clouds of hydrogen glowing with Lyman-alpha emission in the early Universe — revealing that almost the whole night sky is invisibly aglow.

An unexpected abundance of Lyman-alpha emission in the Hubble Ultra Deep Field (HUDF) region was discovered by an international team of astronomers using the MUSE instrument on ESO’s Very Large Telescope (VLT). The discovered emission covers nearly the entire field of view — leading the team to extrapolate that almost all of the sky is invisibly glowing with Lyman-alpha emission from the early Universe [1].

Astronomers have long been accustomed to the sky looking wildly different at different wavelengths, but the extent of the observed Lyman-alpha emission was still surprising. “Realising that the whole sky glows in optical when observing the Lyman-alpha emission from distant clouds of hydrogen was a literally eye-opening surprise,” explained Kasper Borello Schmidt, a member of the team of astronomers behind this result.

This is a great discovery!” added team member Themiya Nanayakkara. “Next time you look at the moonless night sky and see the stars, imagine the unseen glow of hydrogen: the first building block of the universe, illuminating the whole night sky.”

The HUDF region the team observed is an otherwise unremarkable area in the constellation of Fornax (the Furnace), which was famously mapped by the NASA/ESA Hubble Space Telescope in 2004, when Hubble spent more than 270 hours of precious observing time looking deeper than ever before into this region of space.

The HUDF observations revealed thousands of galaxies scattered across what appeared to be a dark patch of sky, giving us a humbling view of the scale of the Universe. Now, the outstanding capabilities of MUSE have allowed us to peer even deeper. The detection of Lyman-alpha emission in the HUDF is the first time astronomers have been able to see this faint emission from the gaseous envelopes of the earliest galaxies. This composite image shows the Lyman-alpha radiation in blue superimposed on the iconic HUDF image.

MUSE, the instrument behind these latest observations, is a state-of-the-art integral field spectrograph installed on Unit Telescope 4 of the VLT at ESO’s Paranal Observatory [2]. When MUSE observes the sky, it sees the distribution of wavelengths in the light striking every pixel in its detector. Looking at the full spectrum of light from astronomical objects provides us with deep insights into the astrophysical processes occurring in the Universe [3].

"With these MUSE observations, we get a completely new view on the diffuse gas 'cocoons' that surround galaxies in the early Universe," commented Philipp Richter, another member of the team.

The international team of astronomers who made these observations have tentatively identified what is causing these distant clouds of hydrogen to emit Lyman-alpha, but the precise cause remains a mystery. However, as this faint omnipresent glow is thought to be ubiquitous in the night sky, future research is expected to shed light on its origin.

In the future, we plan to make even more sensitive measurements,” concluded Lutz Wisotzki, leader of the team. “We want to find out the details of how these vast cosmic reservoirs of atomic hydrogen are distributed in space.

Notes

[1] Light travels astonishingly quickly, but at a finite speed, meaning that the light reaching Earth from extremely distant galaxies took a long time to travel, giving us a window to the past, when the Universe was much younger.

[2] Unit Telescope 4 of the VLT, Yepun, hosts a suite of exceptional scientific instruments and technologically advanced systems, including the Adaptive Optics Facility, which was recently awarded the 2018 Paul F. Forman Team Engineering Excellence Award by the American Optical Society.

[3] The Lyman-alpha radiation that MUSE observed originates from atomic electron transitions in hydrogen atoms which radiate light with a wavelength of around 122 nanometres. As such, this radiation is fully absorbed by the Earth’s atmosphere. Only red-shifted Lyman-alpha emission from extremely distant galaxies has a long enough wavelength to pass through Earth’s atmosphere unimpeded and be detected using ESO’s ground-based telescopes.

eso1832a-2

Das glimmende Universum

Der MUSE-Spektrograf zeigt, dass fast das gesamte frühe Universum im Licht des angeregten Wasserstoffs erstrahlt.

Tiefe Beobachtungen mit dem MUSE-Spektrografen am Very Large Telescope der ESO haben riesige kosmische Reservoirs von atomarem Wasserstoff um entfernte Galaxien entdeckt. Das besonders empfindliche MUSE-Instrument ermöglichte direkte Beobachtungen von dünnen Wasserstoffwolken, die im frühen Universum im Lyman-alpha-Licht leuchten. Dies zeigt, dass fast der ganze Nachthimmel unbemerkt glüht.

Ein internationales Astronomenteam um Lutz Wisotzki, Professor für Beobachtende Kosmologie am Leibniz-Institut für Astrophysik Potsdam (AIP) und der Universität Potsdam, entdeckte mit dem MUSE-Instrument des Very Large Telescope (VLT) der ESO eine unerwartete Fülle von Lyman-alpha-Emission in der Hubble Ultra Deep Field (HUDF)-Region. Lyman-alpha-Emission entsteht, wenn im Wasserstoffatom Elektronen zwischen zwei Energiezuständen wechseln. Dabei senden die Atome UV-Strahlung aus. Die Rotverschiebung der beobachteten Objekte lässt diese Emission für uns im sichtbaren Spektralbereich erscheinen.

Die entdeckte Strahlung deckt fast das gesamte Bildfeld ab, was die Arbeitsgruppe zu der Schlussfolgerung veranlasst, dass nahezu der gesamte Himmel schier unsichtbar im Licht der Lyman-alpha-Emission aus dem frühen Universum erstrahlt [1].

Astronomen sind seit langem daran gewöhnt, dass der Himmel bei verschiedenen Wellenlängen völlig unterschiedlich aussieht, aber das Ausmaß der beobachteten Lyman-alpha-Emission war dennoch überraschend. „Zu erkennen, dass der ganze Himmel bei der Beobachtung der Lyman-alpha-Strahlung aus fernen Wasserstoffwolken optisch leuchtet, war eine buchstäblich augenöffnende Überraschung“, erklärt Kasper Borello Schmidt, Mitglied des Astronomenteams und ebenfalls vom AIP.

Das ist eine großartige Entdeckung“, fügt Teammitglied Themiya Nanayakkara hinzu. „Wenn du das nächste Mal den mondlosen Nachthimmel betrachtest und die Sterne siehst, stell dir das unsichtbare Glühen des Wasserstoffs vor: der Grundbaustein des Universums, der den ganzen Nachthimmel durchzieht.

Die HUDF-Region, die das Team beobachtete, ist ein ansonsten unauffälliges Gebiet im Sternbild Fornax (Chemischer Ofen), das 2004 vom NASA/ESA Hubble-Weltraumteleskop kartiert wurde. Es verbrachte mehr als 270 Stunden seiner wertvollen Beobachtungszeit damit, tiefer als je zuvor in diese Region des Weltraums zu schauen.

Die Beobachtungen enthüllten Tausende von Galaxien, die über einen scheinbar dunklen Fleck am Himmel verstreut waren, was uns einen demütigenden Blick auf die Größe des Universums vermittelte. Dank der hervorragenden Fähigkeiten von MUSE können wir nun noch tiefer ins All blicken. Mit dem Nachweis der Lyman-alpha-Emission im HUDF konnten Astronomen erstmals diese schwache Emission aus den Gashüllen der frühesten Galaxien nachweisen. Das gezeigte Bildkomposit stellt die Lyman-alpha-Strahlung blau dar. Sie ist mit dem berühmten HUDF-Bild überlagert.

MUSE, das Instrument hinter diesen neuesten Beobachtungen, ist ein hochmoderner Integralfeldspektrograf, der am Unit Telescope 4 des VLT am Paranal Observatorium der ESO [2] installiert ist. Wenn MUSE den Himmel beobachtet, sieht es die Verteilung der Wellenlängen im Licht, das auf jedes Pixel seines Detektors trifft. Der Blick auf das gesamte Lichtspektrum astronomischer Objekte gibt uns tiefe Einblicke in die astrophysikalischen Prozesse im Universum [3].

Mit den MUSE-Beobachtungen erhalten wir eine völlig neue Sichtweise auf die diffusen Gaskokons, die Galaxien im frühen Universum umgeben“, kommentierte Philipp Richter, ein weiteres Mitglied des Teams.

Das internationale Team von Astronomen, das diese Beobachtungen durchführte, hat einige Hypothesen über den Mechanismus für die notwendige Anregung der Wasserstoffwolken aufgestellt. Eine Ursache könnte demnach die Streuung von energiereichen Photonen von heißen Sternen sein. Allerdings könnten auch andere Vorgänge - oder eine Mischung davon - für die Lyman-alpha-Strahlung verantwortlich sein.

Da dieses schwache universale Glühen jedoch am Nachthimmel als allgegenwärtig erachtet wird, ist zu erwarten, dass zukünftige Forschungen Aufschluss über seine Herkunft geben werden.

Wir planen in Zukunft die Durchführung erheblich empfindlicherer Messungen“, so Teamleiter Lutz Wisotzki. „Wir wollen herausfinden, welche Rolle die riesigen kosmischen Reservoirs atomaren Wasserstoffs im Weltraum für die Entstehung und Entwicklung von Galaxien, auch unserer eigenen Milchstraße, spielen.

Endnoten

[1] Licht bewegt sich erstaunlich schnell, aber mit endlicher Geschwindigkeit. Das bedeutet, dass das Licht, das die Erde aus extrem entfernten Galaxien erreicht, lange Zeit brauchte, um zu uns zu kommen. Dies ermöglicht uns einen Blick in die Vergangenheit, als das Universum noch viel jünger war.

[2] Das Unit Telescope des VLT, Yepun, beherbergt eine Reihe von außergewöhnlichen, wissenschaftlichen Instrumenten und technologisch fortschrittlichen Systemen, darunter die Adaptive-Optik-Einheit, die kürzlich mit dem Paul F. Forman Team Engineering Excellence Award des Jahres 2018 der American Optical Society ausgezeichnet wurde.

[3] Die Lyman-alpha-Strahlung, die MUSE detektiert hat, stammt von Elektronenübergängen in Wasserstoffatomen, die Licht bei einer Wellenlänge von etwa 122 Nanometern abgeben. In dieser Form wird die Strahlung vollständig von der Erdatmosphäre absorbiert. Nur rotverschobene Lyman-alpha-Emissionen, die von extrem weit entfernten Galaxien ausgesandt werden, besitzen eine ausreichend große Wellenlänge, um die Atmosphäre ungehindert zu durchdringen und von erdgebundenen Teleskopen der ESO nachgewiesen zu werden.

Quelle: ESO

2554 Views
Raumfahrt+Astronomie-Blog von CENAP 0